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What have we learned so far?

Functions

Recursive Functions

Lists

Sets
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Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries
Exercises with dictionaries
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Relation - in the real world and 
computer

A (mathematical) relation models the 
connection between two entities (possibly of 
different types).

Examples:

Subject-object relations: a man read a book

Human relations: child , parent , friend 

Quantitative relations : equal, lesser
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Relation - in the real world and 
computer

Translated into computer science:

Social networks : "friend", "follow", "in circles", 
etc.

A relation between elements of the same set 
defines a graph

(elements are nodes, the relation is represented 
by edges)

⇒ relations are a key notion in graph theory
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Relations - sets of pairs

A binary relation R between two sets A and B is the 
set of pairs: a subset of the Cartesian product 
A × B:R ⊆ A × B
Denoted (x, y ) ∈ R   or xRy   or R(x, y)
when x is in relation to y

A = {1, 2, 3, 4},
B = {a, b, c}

R = {(1, a), (1, c), (2, c), (4, c)}
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Relations - sets of pairs

A relation is a more general notion than a function:  

- a function associates to each x ∈ A a single y ∈ B
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In a relation we can have 

(see figure):

1: has several elements 
associated: a, c 

2: has only one element 
associated: c

3: has no associated element 
from B



Relations - general aspects

In general, a relation is not a symmetric notion: the 
Cartesian product/pair are ordered notions, 

(x, y ) ≠(y, x )
There are, of course, symmetric relations (in the real 
world and in mathematics)
Generalized, we can have an n-ary relation that is a n-
tuples set (from the Cartesian product of n sets).
Example: 
R ⊆ Z x Z x Z
R(x, y, m) if m is a common multiple of x and y:
R(2, 9, 18), R(6, 9, 18), R(2, 9, 36), etc.
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Representation of a relation

We can represent a relationship:

1. Explicitly, by the set of pairs (if finite)

R ⊆ {1, 2, 3, 4} × {a, b, c}

R = {(1, a), (1, c), (2, c), (4, c)}

2. By a rule connecting the elements:

R = {(𝑥, 𝑥2 + 1) | x ∈ Z}
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Representation of a relation
3. As a Boolean/binary matrix, if A, B finite, 
rows indexed by A, and columns by B

𝑚𝑥𝑦 = 1 if (x, y ) ∈ R, 

𝑚𝑥𝑦 = 0 if (x, y ) ∉ R

In practice we can use this type of representation if A and B 
are not very large.
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Relation seen as a function

A relation R ⊆ A x B can be seen as a function fR from A to 
the set of parts of B

fR(x) = {y ∈ B | (x, y) ∈ R}

Associate each x with the set of the 
elements of B to which x is related 
(possibly empty): fR(1) = {a, c}, fR(3) = ∅

A vector of bits/booleans can represent a set : 
represents {a, c} (by characteristic function)
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Number of relations between two sets

Between A and B (finite) there 
are 2|A|·|B|relations R ⊆ A × B

It follows directly from the definition: a relation is a 
subset R ⊆ A × B. So, R ∈ P(A × B). 

But |P(A × B)| = 2|A x B| = 2|A|·|B|.

Or, using the representation as a matrix, which has 
"|A|*|B|" elements. each: chosen independently in 
2 ways: 0 or 1, so 2|A|·|B| choices.

12



Partial functions
A partial function f : A → B is a particular case of relation: 
associates a single element of B (as the function) but not 
necessarily every element of A (as the function is bound to)

Partial functions are useful:
• when the exact domain of the function is not 

known(functions that are not necessarily computable at 
any point). 

• when the domain of definition of the function is very large 
or unlimited, but we represent the function explicitly only 
for the values of interest

Example: population of a locality 
- we may not know the population for all localities 
- if the argument is a string, not every string is a locality 

name
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Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries
Exercises with dictionaries
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Binary relations on a set

The following properties are defined for binary relations 
on a (same) set X: R ⊆ X × X

• reflexive: for any x ∈ X we have (x, x ) ∈ R 
• irreflexive: for any x ∈ X we have (x, x ) ∉ R
• symmetric: for any x, y ∈ X , if (x, y ) ∈ R then also (y, x ) 

∈ R
• antisymmetric: for any x, y ∈ X , if (x, y ) ∈ R and (y, x ) 

∈ R, then x = y
• transitive: for any x, y, z ∈ X , if (x, y ) ∈ R and (y, z ) ∈ R, 

then (x, z ) ∈ R
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Properties of binary relations
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Property

Relation

reflexive symmetric antisymmetric transitive

x ≡ y (mod n) Yes Yes NU Yes

x | y Yes No Yes Yes

x ≤ y Yes No Yes Yes

What properties do the following relations 
have?



Binary relations and graphs

A binary relation on a set X can be represented 
as a graph with X as a set of nodes:
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Directed graph: 
random relation
R ={(a,b), (a,c), (c,d ), (d,a)}

Undirected graph: 
Symmetric relation
R = {(a, b), (a, c), (a, d ), (b, a),
(c, a), (c, d ), (d, a), (d, c)}



Equivalence relations

A relation is an equivalence relation if it is reflexive, 
symmetric and transitive
The relation of equality is (obviously) an equivalence 
relation. 
The congruence relation modulo a number (mod n):
a ≡ b (mod n) if n | a - b (divide the difference) 

The equivalence class of x is the set of elements related 
to x:

{y | (y, x ) ∈ R} denoted 𝑋
^

or [x ]
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Strict order relations

A relation ≺ is a strict order if it is irreflexive and 
transitive

- there is no x with x ≺ x

- if x ≺ y and y ≺ z then x ≺ z

Examples: 

- relations < and > between numbers 

- - the "descendant" relation between persons
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Total order relations

A relation ≤ is a total order if it is:

• reflexive,

• antisymmetric (if x ≤ y and y ≤ x then x = y ),

• transitive, and in addition any two elements are 
comparable, i.e. for any x , y we have x ≤ y or y ≤ x

Examples: relations ≤ and ≥ between numbers 
(integers, reals, etc.)
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Partial order relations

In practice, relations of order often arise that are not total: 
- ranking within groups, but not between different groups
- We know the order in which messages arrive, but not the 

order in which they are sent
- in the expression f (x) + g (x), f and g are called before 

addition, but we do not know whether f or g is evaluated 
first

A relation is a partial (non-strict) order if it is: reflexive, 
antisymmetric and transitive
Examples:
The divisibility relation between integers
Inclusion relation ⊆ on the set of parts
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Partial order relations

Any total order is also a partial order (but not 
reciprocally).

Any partial order induces a strict order, and 
reciprocally: 

We define: a ≺ b if a ≤ b and a ≠ b

Conversely, we define a ≤ b if a ≺ b or a = b
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Properties of binary relations
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Property

Relation

reflexive symmetric antisymm. transitive

x ≡ y 
(mod n)

Yes Yes No Yes Equivalence 
relation

x | y Yes No Yes Yes Partial 
order 

relationsx ≤ y Yes No Yes Yes



Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries
Exercises with dictionaries
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The inverse of a relation

The inverse of a relation R ⊆ A × B is the relation

𝑅−1 ⊆ B × A,

with (y, x ) ∈ 𝑅−1 if and only if (x, y ) ∈ R

𝑅−1 = {(y, x ) | (x, y ) ∈ R}
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Composition of relations

Two relations R1 ⊆ A × B and R2 ⊆ B × C .

Composition R2 ◦ R1 ⊆ A × C  is the relation

R2 ◦ R1 = {(x, z ) | exist y ∈ B | (x, y ) ∈ R1 și (y, z ) ∈ R2}

As with functions, we write R2 ◦ R1 and see that for x ∈ A 
we first find y ∈ B and then z ∈ C .
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Composition of relations

We can see that (R ◦ S)−1 = S −1 ◦ R −1

For an equivalence relation R, R = R −1 

R is transitive if and only if R ◦ R ⊆ R

For a binary relation R ⊆ A × A, denote 

R 2 = R ◦ R, etc.
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Dictionaries in PYTHON

The dictionary is a collection: 

• ordered (as of Python version 3.7), 

• changeable after creation and 

• does not allow duplicates.

Dictionaries are used to store data in key:value 
pairs.
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Dictionaries in PYTHON

Dictionaries are written between two curly braces {} and 
have comma-separated key:value pairs as elements.

dict1 = {
"name": "Alin", “year": 1,
"faculty": "Automatica si Calculatoare"

}
print(dict1)

# {‘name': 'Alin', ‘yesr': 1, ‘faculty': 'Automatica si 
Calculatoare'}
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Dictionaries in PYTHON

Values in the key-value pair can be any data type and can 
be repeated.
Keys in the key-value pair can only be data that cannot be 
changed after their creation (immutable) and cannot be 
repeated.
dict1 = {}
dict2 = {1: “one", 2: “two"}
dict3 = {
 “name": "Ana", 
 “children": ["Andrei", "Maria"]
}
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Dictionaries in PYTHON

We can also create dictionaries with the constructor 
dict()

dict1 = dict()
dict2 = dict({1: “one", 2: “two"})
dict3 = dict(((10, “ten"), (100, “one hunderd")))

# {}
# {1: ‘one', 2: ‘two'}
# {10: ‘ten', 100: ‘one hunderd'}
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Accessing dictionary elements

If in lists we use indexes to access elements, in 
dictionaries we use keys. To access an element we 
use square brackets [] or the get() method.

dict1 ={
"name": "Alin", “year": 1,
"faculty": "Automatica si Calculatoare"

}
print(dict1[“year"])    # 1
print(dict1.get("name"))   # Alin
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Accessing dictionary elements

To access the elements we can use the methods keys(), 
values() and items() as follows:

dict1 ={"name": "Alin", “year": 1, "faculty": "AC"}
print(dict1.keys())
print(dict1values())
print(dict1.items())

# dict_keys(['name', ‘year', 'faculty'])
# dict_values(['Alin', 1, 'AC'])
# dict_items([('name', 'Alin'), (‘year', 1), ('faculty', 'AC')])
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Adding elements to the dictionary

Dictionaries can be modified after they have been 
created: we can add new elements or modify the value of 
an existing key.

dict1 ={"name": "Alin", “year": 1, "faculty": “AC"}

dict1["name"] = "Marius"
dict1[“age"] = 20

print(dict1)
# {'name': 'Marius', ‘year': 1, 'faculty': AC', ‘age': 20}

35



Adding elements to the dictionary

We can add new elements or modify existing 
elements using the update() method

dict1 ={"name": "Alin", “year": 1, "faculty": "AC"}
dict1.update({"name":"Marian"})
dict1.update({"surname": "Popescu", “grade": 10})

print(dict1)
#{'name': 'Marian', ‘year': 1, 'faculty': 'AC', 
'surname': 'Popescu', ‘grade': 10}
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Deleting elements from the dictionary
To delete elements from the dictionary we can use the 
methods:
• pop() - deletes the element specified as a parameter, 
• popitem() - delete a random element from the 
• clear() - clear all items in the dictionary

dict1 = {"name": "Alin", “age": 20, “year": 1, "faculty": "AC"}
dict1.pop("faculty")
print(dict1)  # {'name': 'Alin', ‘age': 20, ‘year': 1}
dict1.popitem()
print(dict1)  # {'name': 'Alin', ‘age': 20}
dict1.clear()
print(dict1)  # {}

37



Deleting elements from the dictionary

We can delete individual elements or the entire 
dictionary with del

dict1 = {"name": "Alin", “age": 20, “year": 1, "faculty": 
"AC"}

del dict1['name']
print(dict1) # {‘age': 20, ‘year': 1, 'faculty': 'AC'}

del dict1
print(dict1) # NameError: name 'dictionar' is not 
defined.
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Checking the existence of an element

To check if a key exists in the dictionary we use in. 
We cannot search by value but only by key.

double = {1: 2, 2: 4, 3: 6, 4: 8, 5: 10}

x = 2
if(x in double):

print(" the key is in the dictionary")
else:

print(" the key is not in the dictionary")
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Nested dictionary

We can have a dictionary as an element of another 
dictionary (nested dictionary)
dict1 = {
    "dict2": {1: 1, 2: 4, 3: 9},
    "dict3": {1: “one", 2: “two"}
}

print(dict1["dict2"][3])
print(dict1["dict3"][2])

# 9
# two
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Relations using dictionaries
We have seen that a relation R ⊆ A x B can be 
seen as a function fR from A to the set of parts of 
B

fR(x) = {y ∈ B | (x, y) ∈ R}

Associate each x with the set of elements of B to 
which x is related (possibly empty): 

fR(1) = {a, c}, fR(3) = ∅

The dictionary will then be from A to subsets of 
elements in B.
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Relations using dictionaries

relation = {

1: {"a", "c"},

2: {"c"},

3: set()

4: {"c"}

}

#{1: {'a', 'c'}, 2: {'c'}, 3: set(), 4: {'c'}}
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Exercises with dictionaries

1. Write a function that takes an association list 
with pairs of type (string, integer) and creates a 
dictionary where each string is associated with 
the sum of all values it is associated with in the 
list.

Exemple:

Input: [("Ana",7), ("Alin",3), ("Ana",9)]

Output: {'Ana': 16, 'Alin': 3}
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Exercises with dictionaries

def transform(lista, dictionar = {}):
   if (lista == []):
        return dictionar
    if(lista[0][0] in dictionar):
        dictionar[lista[0][0]] = lista[0][1] + dictionar[lista[0][0]]
    else:
        dictionar[lista[0][0]] = lista[0][1]
    return transform(lista[1:],dictionar)

l = [("Ana",7), ("Alin",3), ("Ana",9)]

print(transform(l))
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Exercises with dictionaries

2. Dictionary traversal using the reduce() function:

elev_nota = {
    'Alex': 10,
    'Mihai': 9,
    'Ioana': 10
}

print(elev_nota.items())  
# dict_items([('Alex', 10), ('Mihai', 9), ('Ioana', 10)])

47



Exercises with dictionaries

Dictionary traversal using the reduce() function:

def functie_suma(suma, elev):
    nume, nota = elev 
 return suma + nota

def medie_elevi(dictionar):
    suma_note = functools.reduce(functie_suma, 
dictionar.items(), 0)
   return suma_note / len(dictionar)

print(medie_elevi(elev_nota))
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Exercises with dictionaries

3. Recursive dictionary traversal. 
For recursive dictionary traversal, we convert the 
dictionary received as a parameter to 'dict_items', then 
convert 'dict_items' to a list that we will recursively 
traverse.

elev_nota = {
    'Alex': 10,
    'Mihai': 9,
    'Ioana': 10
}
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Exercises with dictionaries

def suma_recursiva(dict_list):
    if len(dict_list) > 0:
        nume, nota = dict_list[0]
        return nota + suma_recursiva(dict_list[1:])
    else:
        return 0

def medie_elevi_recursiva(dictionar):
    suma_note = suma_recursiva(list(dictionar.items())) 
    return suma_note/len(dictionar)

print(medie_elevi_recursiva(elev_nota))
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Thank you!
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