Logic and Discrete Structures - LDS

Course 5 — Relations. Dictionaries
dr. ing. Catalin lapa

catalin.iapa@cs.upt.ro



What have we learned so far?



Relations - theoretical aspects



Relation - in the real world and
computer
A (mathematical) relation models the

connection between two entities (possibly of
different types).

Examples:

Subject-object relations: a man read a book
Human relations: child , parent, friend
Quantitative relations : equal, lesser



Relation - in the real world and
computer

Translated into computer science:

Social networks : "friend", "follow", "in circles",
etc.

A relation between elements of the same set
defines a graph

(elements are nodes, the relation is represented
by edges)

= relations are a key notion in graph theory



Relations - sets of pairs

A binary relation R between two sets A and B is the
set of pairs: a subset of the Cartesian product

AxB:RSAxB
Denoted (x, y) ER or xRy or R(x, y)
when x is in relationto y

A={1, 2, 3,4},
B=1{a, b, c}

R=1(1,0), (1, ¢), (2 c), (4 c)}



Relations - sets of pairs

A relation is a more general notion than a function:
- a function associates to each x € Aa singley € B

In a relation we can have
(see figure):

1: has several elements
associated: a, ¢

2: has only one element
associated: c

3: has no associated element
from B




Relations - general aspects

In general, a relation is not a symmetric notion: the
Cartesian product/pair are ordered notions,

(x,y) #(y, x)
There are, of course, symmetric relations (in the real
world and in mathematics)

Generalized, we can have an n-ary relation that is a n-
tuples set (from the Cartesian product of n sets).

Example:

RCECZxZx/”

R(x, y, m) if m is a common multiple of x and y:
R(2, 9, 18), R(6, 9, 18), R(2, 9, 36), etc.



Representation of a relation

We can represent a relationship:

1. Explicitly, by the set of pairs (if finite)
Rc {1, 2 3 4} x{a, b, c}
R=1{(1,a),(1,¢) (2 c), (4 c)}

2. By a rule connecting the elements:
R={(x,x*+1) | x€ 2z}



Representation of a relation

3. As a Boolean/binary matrix, if A, B finite,
rows indexed by A, and columns by B

Myy =1 if (x, y) ER,

Myy =0if(x, y) &R

In practice we can use this type of representation if A and B
are not very large.

O O O O T
—_ O = |0

A Lo NN =
O O O —H|lw

10



Relation seen as a function

A relation R € A x B can be seen as a function f, from A to
the set of parts of B

fr(x)={y €B | (x,y) ER}

Associate each x with the set of the
elements of B to which x is related

(possibly empty): fo(1) ={a, c}, fo(3) = @

A vector of bits/booleans can represent a set :

a b ¢ represents{a, c} (by characteristic function)
1 0 1




Number of relations between two sets

Between A and B (finite) there
are 2|A1"1Bl relations R c A x B

It follows directly from the definition: a relation is a
subset R € A x B. So, R € P(A x B).

But |P(A x B)| = 21AXBl = 2lAl-|B]

Or, using the representation as a matrix, which has
"|A[*|B]|" elements. each; chosen independently in

2 ways:0or1,so?2 [AL-[B] choices.



Partial functions

A partial function f : A = B is a particular case of relation:
associates a single element of B (as the function) but not
necessarily every element of A (as the function is bound to)

Partial functions are useful:

 when the exact domain of the function is not
known(functions that are not necessarily computable at
any point).

 when the domain of definition of the function is very large
or unlimited, but we represent the function explicitly only
for the values of interest

Example: population of a locality
- we may not know the population for all localities

- if the argument is a string, not every string is a locality
name



Binary relations

14



Binary relations on a set

The following properties are defined for binary relations
ona(same)set X: RE X x X

reflexive: for any x € X we have (x, x ) €ER
irreflexive: for any x € X we have (x, x ) &R

symmetric: forany x, y €X, if (x, y ) €ER then also (y, x )
ER

antisymmetric: forany x, y €X, if (x, y) ER and (y, x )
ER, thenx=y

transitive: forany x,y,z €X, if(x,y) ERand (y, z) ER,
then (x,z) €ER

15



Properties of binary relations

What properties do the following relations

have?
Property reflexive | symmetric | antisymmetric | transitive
Relation
x =y (mod n) Yes Yes NU Yes
X|y Yes No Yes Yes
X<y Yes No Yes Yes




Binary relations and graphs

A binary relation on a set X can be represented

as a graph with X as a set of nodes:

Directed graph: Undirected graph:

random relation Symmetric relation

R={(a,b), (a,c), (c,d), (d,a)}  R={(a, b), (a,c) (ad) (b a)
(¢, a), (c, ac/ ), (d, a), (d, c)}

b




Equivalence relations

A relation is an equivalence relation if it is reflexive,
symmetric and transitive

The relation of equality is (obviously) an equivalence
relation.

The congruence relation modulo a number (mod n):
a=b (modn)ifn| a-b(divide the difference)

The equivalence class of x is the set of elements related
to x:

{y | (y x)€ER} denoted; or [x ]

18



Strict order relations

A relation < is a strict order if it is irreflexive and
transitive

- there is no x with x < x
- ifx<yandy<zthenx <z

Examples:
- relations < and > between numbers
- -the "descendant" relation between persons

19



Total order relations

A relation < is a total order if it is:
e reflexive,
* antisymmetric (ifx<yandy<xthenx=yvy),

* transitive, and in addition any two elements are
comparable, i.e. forany x,y we have x<yory < x

Examples: relations < and > between numbers
(integers, reals, etc.)

20



Partial order relations

In practice, relations of order often arise that are not total:
- ranking within groups, but not between different groups

- We know the order in which messages arrive, but not the
order in which they are sent

- in the expression f (x) + g (x), f and g are called before
addition, but we do not know whether f or g is evaluated

first

A relation is a partial (non-strict) order if it is: reflexive,
antisymmetric and transitive

Examples:
The divisibility relation between integers
Inclusion relation € on the set of parts

21



Partial order relations

Any total order is also a partial order (but not
reciprocally).

Any partial order induces a strict order, and
reciprocally:

We define:a <bifa<banda #b
Conversely, we definea<bifa <bora=>b

22



Properties of binary relations

Property | reflexive | symmetric | antisymm. | transitive
Relation
XEy Yes Yes No Yes Equivalence
(mod n) relation
X |y Yes No Yes Yes Partial
order
XLy Yes No Yes Yes relations




Composition of relations

24



The inverse of a relation

The inverse of a relation R €A x B is the relation
R 1c BxA,
with (y, x) € R™! ifandonlyif (x, y) ER

Rt={y,x)| (x y)€ER}



Composition of relations

Two relationsR, EAxBandR,EBxC.

Composition R, > Ry € A x C is the relation
R,°R,={(x,z) | existy€B | (x,y) ER,si(y,z)€ER,}

As with functions, we write R2 ° R1 and see that for x € A
we first findy € Band thenz € C.



Composition of relations

We can see that (R°S)1=S"1-R"!
For an equivalence relation R, R=R™*
Ris transitive ifand onlyif R RS R

For a binary relation R € A x A, denote
R? =R ° R, etc.

27



Dictionaries in PYTHON

28



Dictionaries in PYTHON

The dictionary is a collection:

* ordered (as of Python version 3.7),
* changeable after creation and

e does not allow duplicates.

Dictionaries are used to store data in key:value
pairs.

29



Dictionaries in PYTHON

Dictionaries are written between two curly braces {} and
have comma-separated key:value pairs as elements.

dictl = {
"name": "Alin", “year": 1,
"faculty": "Automatica si Calculatoare”

}
print(dictl)

# {‘/name’: 'Alin', ‘yesr': 1, ‘faculty': 'Automatica si
Calculatoare'}

30



Dictionaries in PYTHON

Values in the key-value pair can be any data type and can
be repeated.

Keys in the key-value pair can only be data that cannot be
changed after their creation (immutable) and cannot be
repeated.

dictl = {}
dict2 = {1: “one", 2: “two"}
dict3 = {

“name": "Ana",
“children": ["Andrei", "Maria"]



Dictionaries in PYTHON

We can also create dictionaries with the constructor
dict()

dictl = dict()
dict2 = dict({1: “one", 2: “two"})
dict3 = dict(((10, “ten"), (100, “one hunderd")))

#{}
# {1: ‘one’, 2: ‘two'}
# {10: ‘ten’, 100: ‘one hunderd'}



Accessing dictionary elements

If in lists we use indexes to access elements, in
dictionaries we use keys. To access an element we
use square brackets [] or the get() method.

dictl ={
"name"”: "Alin", “year": 1,
"faculty": "Automatica si Calculatoare”
/
print(dict1[“year"]) #1
print(dictl.get("name")) # Alin



Accessing dictionary elements

To access the elements we can use the methods keys(),
values() and items() as follows:

dictl ={"name": "Alin", “year": 1, "faculty": "AC"}
print(dictl.keys())

print(dictlvalues())

print(dictl.items())

# dict_keys(['name’, ‘year’, 'faculty'])
# dict_values(['Alin', 1, 'AC'])
# dict_items([('name’, 'Alin'), (‘year’, 1), (‘faculty’, 'AC")])



Adding elements to the dictionary

Dictionaries can be modified after they have been
created: we can add new elements or modify the value of
an existing key.

dictl ={"name": "Alin", “year": 1, "faculty”: "AC"]

dict1["name"] = "Marius"
dictl[“age"] = 20

print(dict1)
# {'name’: 'Marius’', ‘year': 1, 'faculty’: AC', ‘age’: 20}



Adding elements to the dictionary

We can add new elements or modify existing
elements using the update() method

dictl ={"name": "Alin", “year”: 1, "faculty": "AC"}
dictl.update({"name":"Marian"})
dictl.update({"surname": "Popescu”, “grade": 10})

print(dict1)
#{'name': 'Marian’, ‘year': 1, 'faculty’: 'AC/,
'surname’: 'Popescu’, ‘grade’: 10}



Deleting elements from the dictionary

To delete elements from the dictionary we can use the
methods:

* pop() - deletes the element specified as a parameter,
* popitem() - delete a random element from the
* clear() - clear all items in the dictionary

dictl = {"name": "Alin", “age": 20, “year": 1, "faculty": "AC"}
dictl.pop("faculty")

print(dictl) # {'name’: 'Alin’, ‘age": 20, ‘year": 1}
dictl.popitem()
print(dict1) #{'name: 'Alin’, ‘age": 20}

dictl.clear()
print(dict1) # {}



Deleting elements from the dictionary

We can delete individual elements or the entire
dictionary with del

dictl = {"name": "Alin", “age”: 20, “year”: 1, "faculty":
IIACII}

del dictl['name’]
print(dictl) # {‘age’: 20, ‘year’: 1, 'faculty’: 'AC'}

del dict1

print(dictl) # NameError: name 'dictionar'is not
defined.



Checking the existence of an element

To check if a key exists in the dictionary we use in.
We cannot search by value but only by key.

double ={1:2,2:4, 3:6,4:8,5: 10}

X=2
if(x in double):

print(" the key is in the dictionary")
else:

print(" the key is not in the dictionary")



Nested dictionary

We can have a dictionary as an element of another
dictionary (nested dictionary)

dictl ={
"dict2":{1: 1, 2: 4, 3: 9},
"dict3": {1: “one”, 2: “two"}
/

print(dict1["dict2"][3])
print(dict1["dict3"][2])

#9
# two



Relations implemented with Dictionaries

41



Relations using dictionaries

We have seen that a relation R € A x B can be
seen as a function f, from A to the set of parts of
B

frix)={y €B | (x,y) ER}

Associate each x with the set of elements of B to
which x is related (possibly empty):

fr(1)={a, c}, fr(3) =0
The dictionary will then be from A to subsets of
elements in B.



Relations using dictionaries

relation = {
1:{"a", "c"},
2 ')
3: set()
4: {"c"}

/

#{1: {'a’ 'c'}, 2:{'c'}, 3:set(), 4: {'c'}}




Exercises with dictionaries

44



Exercises with dictionaries

1. Write a function that takes an association list
with pairs of type (string, integer) and creates a
dictionary where each string is associated with
the sum of all values it is associated with in the
list.

Exemple:
Input: [("Ana",7), ("Alin",3), ("Ana",9)]
Output: {'Ana’: 16, 'Alin': 3}




Exercises with dictionaries

def transform(lista, dictionar = {}):
if (lista ==1]):
return dictionar
if(lista[0][0] in dictionar):
dictionar[lista[0][0]] = lista[O][1] + dictionar[lista[0][O]]
else:
dictionar(lista[0][0]] = lista[O][1]
return transform(lista[1:],dictionar)

| =[("Ana",7), ("Alin",3), ("Ana",9)]

print(transform(l))



Exercises with dictionaries

2. Dictionary traversal using the reduce() function:

elev_nota = {
‘Alex’: 10,
'Mihai': 9,
'loana': 10

/

print(elev_nota.items())
# dict_items([('Alex’, 10), ('"Mihai’, 9), ('loana’, 10)])



Exercises with dictionaries

Dictionary traversal using the reduce() function:

def functie_suma(suma, elev):
nume, nota = elev
return suma + nota

def medie_elevi(dictionar):
suma_note = functools.reduce(functie_suma,
dictionar.items(), 0)

return suma_note / len(dictionar)

print(medie_elevi(elev_nota))



Exercises with dictionaries

3. Recursive dictionary traversal.

For recursive dictionary traversal, we convert the
dictionary received as a parameter to 'dict_items', then
convert 'dict_items' to a list that we will recursively
traverse.

elev_nota = {
‘Alex': 10,
'Mihai': 9,
'loana’: 10



Exercises with dictionaries

def suma_recursiva(dict_list):
if len(dict_list) > O:
nume, nota = dict_list[0]
return nota + suma_recursiva(dict_list[1:])
else:
return O

def medie_elevi_recursiva(dictionar):
suma_note = suma_recursiva(list(dictionar.items()))

return suma_note/len(dictionar)

print(medie_elevi_recursiva(elev_nota))



Thank you!

51



Bibliography

 The content of the course is mainly based on the material
from the LSD course taught by Prof. Dr. Eng. Marius Minea
and S.l. Dr. Eng. Casandra Holotescu

(http://staff.cs.upt.ro/~marius/curs/Isd/index.html)



	Slide 1: Logic and Discrete Structures - LDS
	Slide 2
	Slide 3
	Slide 4: Relation - in the real world and computer
	Slide 5: Relation - in the real world and computer
	Slide 6: Relations - sets of pairs
	Slide 7: Relations - sets of pairs
	Slide 8: Relations - general aspects
	Slide 9: Representation of a relation
	Slide 10: Representation of a relation
	Slide 11: Relation seen as a function
	Slide 12: Number of relations between two sets
	Slide 13: Partial functions
	Slide 14
	Slide 15: Binary relations on a set
	Slide 16: Properties of binary relations
	Slide 17: Binary relations and graphs
	Slide 18: Equivalence relations
	Slide 19: Strict order relations
	Slide 20: Total order relations
	Slide 21: Partial order relations
	Slide 22: Partial order relations
	Slide 23: Properties of binary relations
	Slide 24
	Slide 25: The inverse of a relation
	Slide 26: Composition of relations
	Slide 27: Composition of relations
	Slide 28
	Slide 29: Dictionaries in PYTHON
	Slide 30: Dictionaries in PYTHON
	Slide 31: Dictionaries in PYTHON
	Slide 32: Dictionaries in PYTHON
	Slide 33: Accessing dictionary elements
	Slide 34: Accessing dictionary elements
	Slide 35: Adding elements to the dictionary
	Slide 36: Adding elements to the dictionary
	Slide 37: Deleting elements from the dictionary
	Slide 38: Deleting elements from the dictionary
	Slide 39: Checking the existence of an element
	Slide 40: Nested dictionary
	Slide 41
	Slide 42: Relations using dictionaries
	Slide 43: Relations using dictionaries
	Slide 44
	Slide 45: Exercises with dictionaries
	Slide 46: Exercises with dictionaries
	Slide 47: Exercises with dictionaries
	Slide 48: Exercises with dictionaries
	Slide 49: Exercises with dictionaries
	Slide 50: Exercises with dictionaries
	Slide 51
	Slide 52: Bibliography

