
Logic and Discrete Structures - LDS

Course 5 – Relations. Dictionaries

dr. ing. Cătălin Iapă

catalin.iapa@cs.upt.ro

1

What have we learned so far?

Functions

Recursive Functions

Lists

Sets
2

Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries
Exercises with dictionaries

3

Relation - in the real world and
computer

A (mathematical) relation models the
connection between two entities (possibly of
different types).

Examples:

Subject-object relations: a man read a book

Human relations: child , parent , friend

Quantitative relations : equal, lesser

4

Relation - in the real world and
computer

Translated into computer science:

Social networks : "friend", "follow", "in circles",
etc.

A relation between elements of the same set
defines a graph

(elements are nodes, the relation is represented
by edges)

⇒ relations are a key notion in graph theory

5

Relations - sets of pairs

A binary relation R between two sets A and B is the
set of pairs: a subset of the Cartesian product
A × B:R ⊆ A × B
Denoted (x, y) ∈ R or xRy or R(x, y)
when x is in relation to y

A = {1, 2, 3, 4},
B = {a, b, c}

R = {(1, a), (1, c), (2, c), (4, c)}

6

Relations - sets of pairs

A relation is a more general notion than a function:

- a function associates to each x ∈ A a single y ∈ B

7

In a relation we can have

(see figure):

1: has several elements
associated: a, c

2: has only one element
associated: c

3: has no associated element
from B

Relations - general aspects

In general, a relation is not a symmetric notion: the
Cartesian product/pair are ordered notions,

(x, y) ≠(y, x)
There are, of course, symmetric relations (in the real
world and in mathematics)
Generalized, we can have an n-ary relation that is a n-
tuples set (from the Cartesian product of n sets).
Example:
R ⊆ Z x Z x Z
R(x, y, m) if m is a common multiple of x and y:
R(2, 9, 18), R(6, 9, 18), R(2, 9, 36), etc.

8

Representation of a relation

We can represent a relationship:

1. Explicitly, by the set of pairs (if finite)

R ⊆ {1, 2, 3, 4} × {a, b, c}

R = {(1, a), (1, c), (2, c), (4, c)}

2. By a rule connecting the elements:

R = {(𝑥, 𝑥2 + 1) | x ∈ Z}

9

Representation of a relation
3. As a Boolean/binary matrix, if A, B finite,
rows indexed by A, and columns by B

𝑚𝑥𝑦 = 1 if (x, y) ∈ R,

𝑚𝑥𝑦 = 0 if (x, y) ∉ R

In practice we can use this type of representation if A and B
are not very large.

10

Relation seen as a function

A relation R ⊆ A x B can be seen as a function fR from A to
the set of parts of B

fR(x) = {y ∈ B | (x, y) ∈ R}

Associate each x with the set of the
elements of B to which x is related
(possibly empty): fR(1) = {a, c}, fR(3) = ∅

A vector of bits/booleans can represent a set :
represents {a, c} (by characteristic function)

11

Number of relations between two sets

Between A and B (finite) there
are 2|A|·|B|relations R ⊆ A × B

It follows directly from the definition: a relation is a
subset R ⊆ A × B. So, R ∈ P(A × B).

But |P(A × B)| = 2|A x B| = 2|A|·|B|.

Or, using the representation as a matrix, which has
"|A|*|B|" elements. each: chosen independently in
2 ways: 0 or 1, so 2|A|·|B| choices.

12

Partial functions
A partial function f : A → B is a particular case of relation:
associates a single element of B (as the function) but not
necessarily every element of A (as the function is bound to)

Partial functions are useful:
• when the exact domain of the function is not

known(functions that are not necessarily computable at
any point).

• when the domain of definition of the function is very large
or unlimited, but we represent the function explicitly only
for the values of interest

Example: population of a locality
- we may not know the population for all localities
- if the argument is a string, not every string is a locality

name
13

Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries
Exercises with dictionaries

14

Binary relations on a set

The following properties are defined for binary relations
on a (same) set X: R ⊆ X × X

• reflexive: for any x ∈ X we have (x, x) ∈ R
• irreflexive: for any x ∈ X we have (x, x) ∉ R
• symmetric: for any x, y ∈ X , if (x, y) ∈ R then also (y, x)

∈ R
• antisymmetric: for any x, y ∈ X , if (x, y) ∈ R and (y, x)

∈ R, then x = y
• transitive: for any x, y, z ∈ X , if (x, y) ∈ R and (y, z) ∈ R,

then (x, z) ∈ R

15

Properties of binary relations

16

Property

Relation

reflexive symmetric antisymmetric transitive

x ≡ y (mod n) Yes Yes NU Yes

x | y Yes No Yes Yes

x ≤ y Yes No Yes Yes

What properties do the following relations
have?

Binary relations and graphs

A binary relation on a set X can be represented
as a graph with X as a set of nodes:

17

Directed graph:
random relation
R ={(a,b), (a,c), (c,d), (d,a)}

Undirected graph:
Symmetric relation
R = {(a, b), (a, c), (a, d), (b, a),
(c, a), (c, d), (d, a), (d, c)}

Equivalence relations

A relation is an equivalence relation if it is reflexive,
symmetric and transitive
The relation of equality is (obviously) an equivalence
relation.
The congruence relation modulo a number (mod n):
a ≡ b (mod n) if n | a - b (divide the difference)

The equivalence class of x is the set of elements related
to x:

{y | (y, x) ∈ R} denoted 𝑋
^

or [x]

18

Strict order relations

A relation ≺ is a strict order if it is irreflexive and
transitive

- there is no x with x ≺ x

- if x ≺ y and y ≺ z then x ≺ z

Examples:

- relations < and > between numbers

- - the "descendant" relation between persons

19

Total order relations

A relation ≤ is a total order if it is:

• reflexive,

• antisymmetric (if x ≤ y and y ≤ x then x = y),

• transitive, and in addition any two elements are
comparable, i.e. for any x , y we have x ≤ y or y ≤ x

Examples: relations ≤ and ≥ between numbers
(integers, reals, etc.)

20

Partial order relations

In practice, relations of order often arise that are not total:
- ranking within groups, but not between different groups
- We know the order in which messages arrive, but not the

order in which they are sent
- in the expression f (x) + g (x), f and g are called before

addition, but we do not know whether f or g is evaluated
first

A relation is a partial (non-strict) order if it is: reflexive,
antisymmetric and transitive
Examples:
The divisibility relation between integers
Inclusion relation ⊆ on the set of parts

21

Partial order relations

Any total order is also a partial order (but not
reciprocally).

Any partial order induces a strict order, and
reciprocally:

We define: a ≺ b if a ≤ b and a ≠ b

Conversely, we define a ≤ b if a ≺ b or a = b

22

Properties of binary relations

23

Property

Relation

reflexive symmetric antisymm. transitive

x ≡ y
(mod n)

Yes Yes No Yes Equivalence
relation

x | y Yes No Yes Yes Partial
order

relationsx ≤ y Yes No Yes Yes

Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries
Exercises with dictionaries

24

The inverse of a relation

The inverse of a relation R ⊆ A × B is the relation

𝑅−1 ⊆ B × A,

with (y, x) ∈ 𝑅−1 if and only if (x, y) ∈ R

𝑅−1 = {(y, x) | (x, y) ∈ R}

25

Composition of relations

Two relations R1 ⊆ A × B and R2 ⊆ B × C .

Composition R2 ◦ R1 ⊆ A × C is the relation

R2 ◦ R1 = {(x, z) | exist y ∈ B | (x, y) ∈ R1 și (y, z) ∈ R2}

As with functions, we write R2 ◦ R1 and see that for x ∈ A
we first find y ∈ B and then z ∈ C .

26

Composition of relations

We can see that (R ◦ S)−1 = S −1 ◦ R −1

For an equivalence relation R, R = R −1

R is transitive if and only if R ◦ R ⊆ R

For a binary relation R ⊆ A × A, denote

R 2 = R ◦ R, etc.

27

Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries
Exercises with dictionaries

28

Dictionaries in PYTHON

The dictionary is a collection:

• ordered (as of Python version 3.7),

• changeable after creation and

• does not allow duplicates.

Dictionaries are used to store data in key:value
pairs.

29

Dictionaries in PYTHON

Dictionaries are written between two curly braces {} and
have comma-separated key:value pairs as elements.

dict1 = {
"name": "Alin", “year": 1,
"faculty": "Automatica si Calculatoare"

}
print(dict1)

{‘name': 'Alin', ‘yesr': 1, ‘faculty': 'Automatica si
Calculatoare'}

30

Dictionaries in PYTHON

Values in the key-value pair can be any data type and can
be repeated.
Keys in the key-value pair can only be data that cannot be
changed after their creation (immutable) and cannot be
repeated.
dict1 = {}
dict2 = {1: “one", 2: “two"}
dict3 = {
 “name": "Ana",
 “children": ["Andrei", "Maria"]
}

31

Dictionaries in PYTHON

We can also create dictionaries with the constructor
dict()

dict1 = dict()
dict2 = dict({1: “one", 2: “two"})
dict3 = dict(((10, “ten"), (100, “one hunderd")))

{}
{1: ‘one', 2: ‘two'}
{10: ‘ten', 100: ‘one hunderd'}

32

Accessing dictionary elements

If in lists we use indexes to access elements, in
dictionaries we use keys. To access an element we
use square brackets [] or the get() method.

dict1 ={
"name": "Alin", “year": 1,
"faculty": "Automatica si Calculatoare"

}
print(dict1[“year"]) # 1
print(dict1.get("name")) # Alin

33

Accessing dictionary elements

To access the elements we can use the methods keys(),
values() and items() as follows:

dict1 ={"name": "Alin", “year": 1, "faculty": "AC"}
print(dict1.keys())
print(dict1values())
print(dict1.items())

dict_keys(['name', ‘year', 'faculty'])
dict_values(['Alin', 1, 'AC'])
dict_items([('name', 'Alin'), (‘year', 1), ('faculty', 'AC')])

34

Adding elements to the dictionary

Dictionaries can be modified after they have been
created: we can add new elements or modify the value of
an existing key.

dict1 ={"name": "Alin", “year": 1, "faculty": “AC"}

dict1["name"] = "Marius"
dict1[“age"] = 20

print(dict1)
{'name': 'Marius', ‘year': 1, 'faculty': AC', ‘age': 20}

35

Adding elements to the dictionary

We can add new elements or modify existing
elements using the update() method

dict1 ={"name": "Alin", “year": 1, "faculty": "AC"}
dict1.update({"name":"Marian"})
dict1.update({"surname": "Popescu", “grade": 10})

print(dict1)
#{'name': 'Marian', ‘year': 1, 'faculty': 'AC',
'surname': 'Popescu', ‘grade': 10}

36

Deleting elements from the dictionary
To delete elements from the dictionary we can use the
methods:
• pop() - deletes the element specified as a parameter,
• popitem() - delete a random element from the
• clear() - clear all items in the dictionary

dict1 = {"name": "Alin", “age": 20, “year": 1, "faculty": "AC"}
dict1.pop("faculty")
print(dict1) # {'name': 'Alin', ‘age': 20, ‘year': 1}
dict1.popitem()
print(dict1) # {'name': 'Alin', ‘age': 20}
dict1.clear()
print(dict1) # {}

37

Deleting elements from the dictionary

We can delete individual elements or the entire
dictionary with del

dict1 = {"name": "Alin", “age": 20, “year": 1, "faculty":
"AC"}

del dict1['name']
print(dict1) # {‘age': 20, ‘year': 1, 'faculty': 'AC'}

del dict1
print(dict1) # NameError: name 'dictionar' is not
defined.

38

Checking the existence of an element

To check if a key exists in the dictionary we use in.
We cannot search by value but only by key.

double = {1: 2, 2: 4, 3: 6, 4: 8, 5: 10}

x = 2
if(x in double):

print(" the key is in the dictionary")
else:

print(" the key is not in the dictionary")

39

Nested dictionary

We can have a dictionary as an element of another
dictionary (nested dictionary)
dict1 = {
 "dict2": {1: 1, 2: 4, 3: 9},
 "dict3": {1: “one", 2: “two"}
}

print(dict1["dict2"][3])
print(dict1["dict3"][2])

9
two

40

Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries
Exercises with dictionaries

41

Relations using dictionaries
We have seen that a relation R ⊆ A x B can be
seen as a function fR from A to the set of parts of
B

fR(x) = {y ∈ B | (x, y) ∈ R}

Associate each x with the set of elements of B to
which x is related (possibly empty):

fR(1) = {a, c}, fR(3) = ∅

The dictionary will then be from A to subsets of
elements in B.

42

Relations using dictionaries

relation = {

1: {"a", "c"},

2: {"c"},

3: set()

4: {"c"}

}

#{1: {'a', 'c'}, 2: {'c'}, 3: set(), 4: {'c'}}

43

Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries

Exercises with dictionaries
44

Exercises with dictionaries

1. Write a function that takes an association list
with pairs of type (string, integer) and creates a
dictionary where each string is associated with
the sum of all values it is associated with in the
list.

Exemple:

Input: [("Ana",7), ("Alin",3), ("Ana",9)]

Output: {'Ana': 16, 'Alin': 3}

45

Exercises with dictionaries

def transform(lista, dictionar = {}):
 if (lista == []):
 return dictionar
 if(lista[0][0] in dictionar):
 dictionar[lista[0][0]] = lista[0][1] + dictionar[lista[0][0]]
 else:
 dictionar[lista[0][0]] = lista[0][1]
 return transform(lista[1:],dictionar)

l = [("Ana",7), ("Alin",3), ("Ana",9)]

print(transform(l))

46

Exercises with dictionaries

2. Dictionary traversal using the reduce() function:

elev_nota = {
 'Alex': 10,
 'Mihai': 9,
 'Ioana': 10
}

print(elev_nota.items())
dict_items([('Alex', 10), ('Mihai', 9), ('Ioana', 10)])

47

Exercises with dictionaries

Dictionary traversal using the reduce() function:

def functie_suma(suma, elev):
 nume, nota = elev
 return suma + nota

def medie_elevi(dictionar):
 suma_note = functools.reduce(functie_suma,
dictionar.items(), 0)
 return suma_note / len(dictionar)

print(medie_elevi(elev_nota))

48

Exercises with dictionaries

3. Recursive dictionary traversal.
For recursive dictionary traversal, we convert the
dictionary received as a parameter to 'dict_items', then
convert 'dict_items' to a list that we will recursively
traverse.

elev_nota = {
 'Alex': 10,
 'Mihai': 9,
 'Ioana': 10
}

49

Exercises with dictionaries

def suma_recursiva(dict_list):
 if len(dict_list) > 0:
 nume, nota = dict_list[0]
 return nota + suma_recursiva(dict_list[1:])
 else:
 return 0

def medie_elevi_recursiva(dictionar):
 suma_note = suma_recursiva(list(dictionar.items()))
 return suma_note/len(dictionar)

print(medie_elevi_recursiva(elev_nota))
50

Thank you!

51

Bibliography

• The content of the course is mainly based on the material
from the LSD course taught by Prof. Dr. Eng. Marius Minea
and S.l. Dr. Eng. Casandra Holotescu
(http://staff.cs.upt.ro/~marius/curs/lsd/index.html)

52

	Slide 1: Logic and Discrete Structures - LDS
	Slide 2
	Slide 3
	Slide 4: Relation - in the real world and computer
	Slide 5: Relation - in the real world and computer
	Slide 6: Relations - sets of pairs
	Slide 7: Relations - sets of pairs
	Slide 8: Relations - general aspects
	Slide 9: Representation of a relation
	Slide 10: Representation of a relation
	Slide 11: Relation seen as a function
	Slide 12: Number of relations between two sets
	Slide 13: Partial functions
	Slide 14
	Slide 15: Binary relations on a set
	Slide 16: Properties of binary relations
	Slide 17: Binary relations and graphs
	Slide 18: Equivalence relations
	Slide 19: Strict order relations
	Slide 20: Total order relations
	Slide 21: Partial order relations
	Slide 22: Partial order relations
	Slide 23: Properties of binary relations
	Slide 24
	Slide 25: The inverse of a relation
	Slide 26: Composition of relations
	Slide 27: Composition of relations
	Slide 28
	Slide 29: Dictionaries in PYTHON
	Slide 30: Dictionaries in PYTHON
	Slide 31: Dictionaries in PYTHON
	Slide 32: Dictionaries in PYTHON
	Slide 33: Accessing dictionary elements
	Slide 34: Accessing dictionary elements
	Slide 35: Adding elements to the dictionary
	Slide 36: Adding elements to the dictionary
	Slide 37: Deleting elements from the dictionary
	Slide 38: Deleting elements from the dictionary
	Slide 39: Checking the existence of an element
	Slide 40: Nested dictionary
	Slide 41
	Slide 42: Relations using dictionaries
	Slide 43: Relations using dictionaries
	Slide 44
	Slide 45: Exercises with dictionaries
	Slide 46: Exercises with dictionaries
	Slide 47: Exercises with dictionaries
	Slide 48: Exercises with dictionaries
	Slide 49: Exercises with dictionaries
	Slide 50: Exercises with dictionaries
	Slide 51
	Slide 52: Bibliography

