Logic and Discrete Structures - LDS

Course 5 – Relations. Dictionaries dr. ing. Cătălin Iapă catalin.iapa@cs.upt.ro

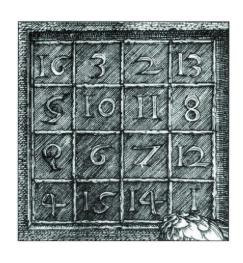
What have we learned so far?

Functions

Recursive Functions

Lists

Sets



Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries Exercises with dictionaries

Relation - in the real world and computer

A (mathematical) relation models the connection between two entities (possibly of different types).

Examples:

Subject-object relations: a man read a book

Human relations: child, parent, friend

Quantitative relations : equal, lesser

Relation - in the real world and computer

Translated into computer science:

Social networks: "friend", "follow", "in circles", etc.

A relation between elements of the same set defines a graph

(elements are nodes, the relation is represented by edges)

⇒ relations are a key notion in graph theory

Relations - sets of pairs

A binary relation R between two sets A and B is the set of pairs: a subset of the Cartesian product

$$A \times B: R \subseteq A \times B$$

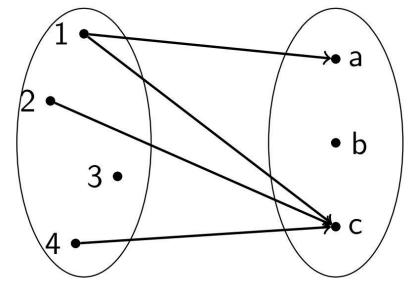
Denoted $(x, y) \in R$ or xRy or R(x, y)

when x is in relation to y

$$A = \{1, 2, 3, 4\},\$$

 $B = \{a, b, c\}$

$$R = \{(1, a), (1, c), (2, c), (4, c)\}$$



Relations - sets of pairs

A relation is a more general notion than a function:

- a function associates to each $x \in A$ a single $y \in B$

In a relation we can have

(see figure):

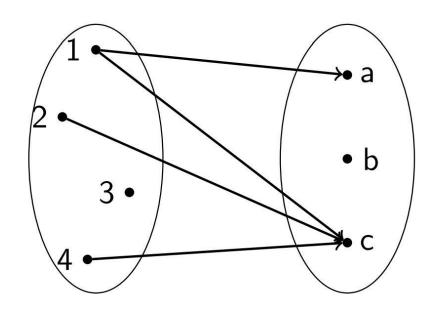
1: has several elements

associated: a, c

2: has only one element

associated: c

3: has no associated element from B



Relations - general aspects

In general, a relation is not a symmetric notion: the Cartesian product/pair are ordered notions,

$$(x, y) \neq (y, x)$$

There are, of course, symmetric relations (in the real world and in mathematics)

Generalized, we can have an n-ary relation that is a n-tuples set (from the Cartesian product of n sets).

Example:

 $R \subseteq Z \times Z \times Z$

R(x, y, m) if m is a common multiple of x and y:

R(2, 9, 18), R(6, 9, 18), R(2, 9, 36), etc.

Representation of a relation

We can represent a relationship:

1. Explicitly, by the set of pairs (if finite) $R \subseteq \{1, 2, 3, 4\} \times \{a, b, c\}$ $R = \{(1, a), (1, c), (2, c), (4, c)\}$

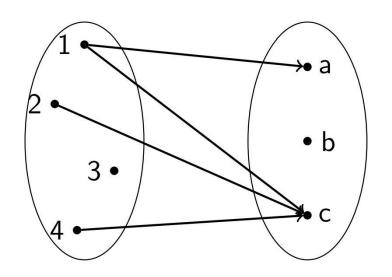
2. By a rule connecting the elements:

$$R = \{(x, x^2 + 1) \mid x \in Z\}$$

Representation of a relation

3. As a Boolean/binary matrix, if A, B finite, rows indexed by A, and columns by B $m_{xy} = 1$ if $(x, y) \in R$, $m_{xy} = 0$ if $(x, y) \notin R$

In practice we can use this type of representation if A and B are not very large.



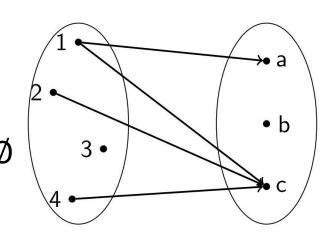
	а	b	С
1	1	0	1
2	0	0	1
3	0	0	0
4	0	0	1

Relation seen as a function

A relation $R \subseteq A \times B$ can be seen as a function f_R from A to the set of parts of B

$$f_R(x) = \{ y \in B \mid (x, y) \in R \}$$

Associate each x with the set of the elements of B to which x is related (possibly empty): $f_R(1) = \{a, c\}, f_R(3) = \emptyset$



A vector of bits/booleans can represent a set:

Number of relations between two sets

Between A and B (finite) there are $2|A| \cdot |B|$ relations $R \subseteq A \times B$

It follows directly from the definition: a relation is a subset $R \subseteq A \times B$. So, $R \in P(A \times B)$.

But
$$|P(A \times B)| = 2 |A \times B| = 2 |A| \cdot |B|$$
.

Or, using the representation as a matrix, which has "|A|*|B|" elements. each: chosen independently in 2 ways: 0 or 1, so $2\frac{|A|\cdot|B|}{|B|}$ choices.

Partial functions

A partial function $f: A \rightarrow B$ is a particular case of relation: associates a single element of B (as the function) but not necessarily every element of A (as the function is bound to)

Partial functions are useful:

- when the exact domain of the function is not known(functions that are not necessarily computable at any point).
- when the domain of definition of the function is very large or unlimited, but we represent the function explicitly only for the values of interest

Example: population of a locality

- we may not know the population for all localities
- if the argument is a string, not every string is a locality name

Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries Exercises with dictionaries

Binary relations on a set

The following properties are defined for binary relations on a (same) set $X: R \subseteq X \times X$

- reflexive: for any $x \in X$ we have $(x, x) \in R$
- irreflexive: for any $x \in X$ we have $(x, x) \notin R$
- symmetric: for any $x, y \in X$, if $(x, y) \in R$ then also $(y, x) \in R$
- antisymmetric: for any $x, y \in X$, if $(x, y) \in R$ and $(y, x) \in R$, then x = y
- transitive: for any x, y, $z \in X$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$

Properties of binary relations

What properties do the following relations have?

Property	reflexive	symmetric	antisymmetric	transitive
Relation				
$x \equiv y \pmod{n}$	Yes	Yes	NU	Yes
x y	Yes	No	Yes	Yes
x≤y	Yes	No	Yes	Yes

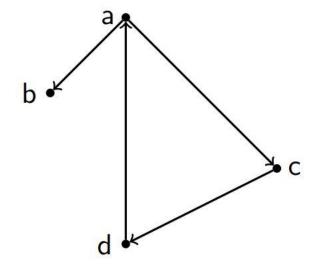
Binary relations and graphs

A binary relation on a set X can be represented as a graph with X as a set of nodes:

Directed graph:

random relation

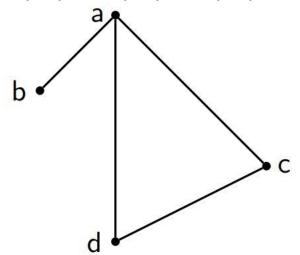
$$R = \{(a,b), (a,c), (c,d), (d,a)\}$$



Undirected graph:

Symmetric relation

$$R = \{(a, b), (a, c), (a, d), (b, a), (c, a), (c, d), (d, a), (d, c)\}$$



Equivalence relations

A relation is an equivalence relation if it is reflexive, symmetric and transitive

The relation of equality is (obviously) an equivalence relation.

The congruence relation modulo a number (mod n): $a \equiv b \pmod{n}$ if $n \mid a - b \pmod{divide}$ the difference)

The equivalence class of x is the set of elements related to x:

$$\{y \mid (y, x) \in R\}$$
 denoted \hat{X} or $[x]$

Strict order relations

A relation ≺ is a strict order if it is irreflexive and transitive

- there is no x with x < x
- if x < y and y < z then x < z

Examples:

- relations < and > between numbers
- - the "descendant" relation between persons

Total order relations

A relation ≤ is a total order if it is:

- reflexive,
- antisymmetric (if $x \le y$ and $y \le x$ then x = y),
- transitive, and in addition any two elements are comparable, i.e. for any x , y we have x ≤ y or y ≤ x

Examples: relations ≤ and ≥ between numbers (integers, reals, etc.)

Partial order relations

In practice, relations of order often arise that are not total:

- ranking within groups, but not between different groups
- We know the order in which messages arrive, but not the order in which they are sent
- in the expression f (x) + g (x), f and g are called before addition, but we do not know whether f or g is evaluated first

A relation is a partial (non-strict) order if it is: reflexive, antisymmetric and transitive

Examples:

The divisibility relation between integers Inclusion relation ⊆ on the set of parts

Partial order relations

Any total order is also a partial order (but not reciprocally).

Any partial order induces a strict order, and reciprocally:

We define: a < b if $a \le b$ and $a \ne b$ Conversely, we define $a \le b$ if a < b or a = b

Properties of binary relations

Property	reflexive	symmetric	antisymm.	transitive	
Relation					
$x \equiv y$ (mod n)	Yes	Yes	No	Yes	Equivalence relation
x y	Yes	No	Yes	Yes	Partial order
x≤y	Yes	No	Yes	Yes	relations

Relations - theoretical aspects
Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries Exercises with dictionaries

The inverse of a relation

The inverse of a relation $R \subseteq A \times B$ is the relation

$$R^{-1} \subseteq B \times A$$
,

with $(y, x) \in R^{-1}$ if and only if $(x, y) \in R$

$$R^{-1} = \{(y, x) \mid (x, y) \in R\}$$

Composition of relations

Two relations $R_1 \subseteq A \times B$ and $R_2 \subseteq B \times C$.

Composition $R_2 \circ R_1 \subseteq A \times C$ is the relation $R_2 \circ R_1 = \{(x, z) \mid \text{ exist } y \in B \mid (x, y) \in R_1 \text{ și } (y, z) \in R_2 \}$

As with functions, we write $R2 \circ R1$ and see that for $x \in A$ we first find $y \in B$ and then $z \in C$.

Composition of relations

We can see that $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

For an equivalence relation R, $R = R^{-1}$

R is transitive if and only if $R \circ R \subseteq R$

For a binary relation $R \subseteq A \times A$, denote $R^2 = R \circ R$, etc.

Relations - theoretical aspects
Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries Exercises with dictionaries

The dictionary is a collection:

- ordered (as of Python version 3.7),
- changeable after creation and
- does not allow duplicates.

Dictionaries are used to store data in key:value pairs.

Dictionaries are written between two curly braces {} and have comma-separated key:value pairs as elements.

```
dict1 = {
   "name": "Alin", "year": 1,
   "faculty": "Automatica si Calculatoare"
}
print(dict1)

# {'name': 'Alin', 'yesr': 1, 'faculty': 'Automatica si Calculatoare'}
```

Values in the key-value pair can be any data type and can be repeated.

Keys in the key-value pair can only be data that cannot be changed after their creation (immutable) and cannot be repeated.

We can also create dictionaries with the constructor dict()

```
dict1 = dict()
dict2 = dict({1: "one", 2: "two"})
dict3 = dict(((10, "ten"), (100, "one hunderd")))
# {}
# {1: 'one', 2: 'two'}
# {10: 'ten', 100: 'one hunderd'}
```

Accessing dictionary elements

If in lists we use indexes to access elements, in dictionaries we use keys. To access an element we use square brackets [] or the get() method.

```
dict1 ={
    "name": "Alin", "year": 1,
    "faculty": "Automatica si Calculatoare"
}
print(dict1["year"]) # 1
print(dict1.get("name")) # Alin
```

Accessing dictionary elements

To access the elements we can use the methods keys(), values() and items() as follows:

```
dict1 ={"name": "Alin", "year": 1, "faculty": "AC"}
print(dict1.keys())
print(dict1values())
print(dict1.items())

# dict_keys(['name', 'year', 'faculty'])
# dict_values(['Alin', 1, 'AC'])
# dict_items([('name', 'Alin'), ('year', 1), ('faculty', 'AC')])
```

Adding elements to the dictionary

Dictionaries can be modified after they have been created: we can add new elements or modify the value of an existing key.

```
dict1 ={"name": "Alin", "year": 1, "faculty": "AC"}

dict1["name"] = "Marius"

dict1["age"] = 20

print(dict1)
# {'name': 'Marius', 'year': 1, 'faculty': AC', 'age': 20}
```

Adding elements to the dictionary

We can add new elements or modify existing elements using the update() method

```
dict1 ={"name": "Alin", "year": 1, "faculty": "AC"}
dict1.update({"name": "Marian"})
dict1.update({"surname": "Popescu", "grade": 10})
print(dict1)
#{'name': 'Marian', 'year': 1, 'faculty': 'AC',
'surname': 'Popescu', 'grade': 10}
```

Deleting elements from the dictionary

To delete elements from the dictionary we can use the methods:

- pop() deletes the element specified as a parameter,
- popitem() delete a random element from the
- clear() clear all items in the dictionary

```
dict1 = {"name": "Alin", "age": 20, "year": 1, "faculty": "AC"}
dict1.pop("faculty")
print(dict1)  # {'name': 'Alin', 'age': 20, 'year': 1}
dict1.popitem()
print(dict1)  # {'name': 'Alin', 'age': 20}
dict1.clear()
print(dict1)  # {}
```

Deleting elements from the dictionary

We can delete individual elements or the entire dictionary with del

```
dict1 = {"name": "Alin", "age": 20, "year": 1, "faculty":
"AC"}

del dict1['name']
print(dict1) # {'age': 20, 'year': 1, 'faculty': 'AC'}
```

del dict1
print(dict1) # NameError: name 'dictionar' is not
defined.

Checking the existence of an element

To check if a key exists in the dictionary we use in. We cannot search by value but only by key.

```
x = 2
if(x in double):
    print(" the key is in the dictionary")
else:
    print(" the key is not in the dictionary")
```

double = {1: 2, 2: 4, 3: 6, 4: 8, 5: 10}

Nested dictionary

```
We can have a dictionary as an element of another
dictionary (nested dictionary)
dict1 = {
  "dict2": {1: 1, 2: 4, 3: 9},
  "dict3": {1: "one", 2: "two"}
print(dict1["dict2"][3])
print(dict1["dict3"][2])
#9
# two
```


Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries

Relations using dictionaries

We have seen that a relation $R \subseteq A \times B$ can be seen as a function f_R from A to the set of parts of B

$$f_R(x) = \{ y \in B \mid (x, y) \in R \}$$

Associate each x with the set of elements of B to which x is related (possibly empty):

$$f_R(1) = \{a, c\}, f_R(3) = \emptyset$$

The dictionary will then be from A to subsets of elements in B.

Relations using dictionaries

```
relation = {
  1: {"a", "c"},
  2: {"c"},
  3: set()
  4: {"c"}
#{1: {'a', 'c'}, 2: {'c'}, 3: set(), 4: {'c'}}
```


Relations - theoretical aspects

Binary relations

Composition of relations

Dictionaries in PYTHON

Relations implemented with Dictionaries

1. Write a function that takes an association list with pairs of type (string, integer) and creates a dictionary where each string is associated with the sum of all values it is associated with in the list.

Exemple:

Input: [("Ana",7), ("Alin",3), ("Ana",9)]

Output: {'Ana': 16, 'Alin': 3}

```
def transform(lista, dictionar = {}):
  if (lista == []):
     return dictionar
  if(lista[0][0] in dictionar):
    dictionar[lista[0][0]] = lista[0][1] + dictionar[lista[0][0]]
  else:
     dictionar[lista[0][0]] = lista[0][1]
  return transform(lista[1:],dictionar)
I = [("Ana",7), ("Alin",3), ("Ana",9)]
print(transform(I))
```

2. Dictionary traversal using the reduce() function:

```
elev_nota = {
    'Alex': 10,
    'Mihai': 9,
    'loana': 10
}

print(elev_nota.items())
# dict_items([('Alex', 10), ('Mihai', 9), ('Ioana', 10)])
```

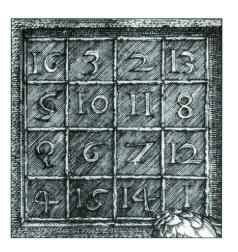
Dictionary traversal using the reduce() function:

```
def functie suma(suma, elev):
       nume, nota = elev
       return suma + nota
def medie elevi(dictionar):
      suma note = functools.reduce(functie suma,
dictionar.items(), 0)
       return suma note / len(dictionar)
print(medie elevi(elev nota))
```

3. Recursive dictionary traversal.

For recursive dictionary traversal, we convert the dictionary received as a parameter to 'dict_items', then convert 'dict_items' to a list that we will recursively traverse.

```
def suma recursiva(dict list):
  if len(dict list) > 0:
    nume, nota = dict list[0]
    return nota + suma recursiva(dict list[1:])
  else:
    return 0
def medie elevi recursiva(dictionar):
  suma note = suma recursiva(list(dictionar.items()))
  return suma note/len(dictionar)
print(medie elevi recursiva(elev nota))
```



Thank you!

Bibliography

 The content of the course is mainly based on the material from the LSD course taught by Prof. Dr. Eng. Marius Minea and S.I. Dr. Eng. Casandra Holotescu (http://staff.cs.upt.ro/~marius/curs/lsd/index.html)